- Assessment: Financial Performance Evaluation of Savory Snacks Company Ltd for Credit
- CMI L5 Assignment: Managing Stakeholder Relationships: Strategies, Challenges, and Best Practices
- Level 3 Unit 2 Assignment: Principles, Values and Regulation in the Health and Social Care Sector
- COM4006 Assignment: Introduction to Academic Skills and Professional Development
- Assessment: Managing Organisational Change: Evaluating Strategies, Challenges, and Impact
- UNIT CMI 706 Assignment: Finance for Strategic Leaders: The Role, Scope, and Impact of Finance
- ENGINEERING DESIGN TMA2 v1: CAD Design Report: Specification, Evaluation & Drawings
- Unit CMI 514 Assignment: Analysis of Organisational Change: Managing Change
- EMS402U TMA1: Engineering Design Solutions: Concept Development & Assessment
- LEVEL 3 UNIT 31: Effective Project Management (International BTEC )
- ILM Level 4 ASSIGNMENT: Managing equality and diversity in own area
- CMI 504 Assessment: The Rationale For Managing Performance Within Organisations
- Level 7 Unit 03 Assignment: Leading a Strategic Management and Leadership
- LO:01, LO:02 (MSCCO01) Managing Innovation and Change in Computing
- CMI Level 6 Certificate in Professional Management and Leadership
- Financial Accounting: Double-Entry Bookkeeping, Journals, Ledgers, and Trial Balance Preparation
- Assignment 1: Understand and Work with a Wide Range of Stakeholders and Organisational Structures
- CMI 526 Assessment: Principles of Leadership Practice
- Promoting Health, Wellbeing, and Inclusive Care in Health and Social Care Settings
- MID4022 Legal and Ethical Professional Principle in Midwifery
NHA2414: Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function: Dynamic Analysis and Control Assignment, UOH, UK
University | University of Huddersfield (UOH) |
Task 1
The quarter-car model of a vehicle suspension and its free body diagram is shown in Figure 1. In this simplified model, the masses of the wheel, tire, and axle are neglected, and the mass m represents one-fourth of the vehicle mass. The spring constant k models the elasticity of both the tire and the suspension spring. The damping constant c models the shock absorber. The equilibrium position of m when y=0 is x=0. The road surface displacement y(t) can be derived from the road surface profile and the car’s speed.
- Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function.
If assume:
m=250 kg
k=10000, 30000, 50000 N/m
c=1000, 2000, 3000 N.s/m
- Plot magnification ratio vs frequency ratio (r=0-4) diagrams for the parameters given above (you can draw the three curves in one diagram for three different k values and do the same for the three c values as well).
- Use the derived transfer function to model the system and plot the step response for the system by Matlab or Simulink.
Task 2
A common example of base excitation is caused by a vehicle moving along a bumpy road surface as shown in Figure 2. This motion produces a displacement input to the suspension system via the wheels. The second task is to calculate and draw a displacement transmissibility ratio diagram for a quarter car with 250 kg, the spring constant is 10000 N/m, but varying damping constant to be 1000, 2000, 3000, 5000, and 10000 N.s/m. If the vehicle driver wishes to reduce the vehicle’s body displacement, what suggestion you could make for the driver and why?
Do You Need Assignment of This Question
If you are in need of top-quality HND assignment help UK, then you should look no further than our experienced professionals here at Diploma Assignment Help UK. Our assignment experts have years of experience in providing HND assignments and can ensure that your assignment meets the highest academic standards and fulfills all the requirements set by your university or college.